Reendothelialization of human heart valve neoscaffolds using umbilical cord-derived endothelial cells.

نویسندگان

  • Alexander Weymann
  • Bastian Schmack
  • Takayuki Okada
  • Pál Soós
  • Roland Istók
  • Tamás Radovits
  • Beate Straub
  • Enikö Barnucz
  • Sivakkanan Loganathan
  • Ines Pätzold
  • Nicole Chaimow
  • Carsten Schies
  • Sevil Korkmaz
  • Ursula Tochtermann
  • Matthias Karck
  • Gábor Szabó
چکیده

BACKGROUND Heart valve tissue engineering represents a concept for improving the current methods of valvular heart disease therapy. The aim of this study was to develop tissue engineered heart valves combining human umbilical vein endothelial cells (HUVECs) and decellularized human heart valve matrices. METHODS AND RESULTS Pulmonary (n=9) and aortic (n=6) human allografts were harvested from explanted hearts from heart transplant recipients and were decellularized using a detergent-based cell extraction method. Analysis of decellularization success was performed with light microscopy, transmission electron microscopy and quantitative analysis of collagen and elastin content. The decellularization method resulted in full removal of native cells while the mechanical stability and the quantitative composition of the neoscaffolds was maintained. The luminal surface of the human matrix could be successfully recellularized with in vitro expanded HUVECs under dynamic flow conditions. The surface appeared as a confluent cell monolayer of positively labeled cells for von Willebrand factor and CD 31, indicating their endothelial nature. CONCLUSIONS Human heart valves can be decellularized by the described method. Recellularization of the human matrix resulted in the formation of a confluent HUVEC monolayer. The in vitro construction of tissue-engineered heart valves based on decellularized human matrices followed by endothelialization using HUVECs is a feasible and safe method, leading to the development of future clinical strategies in the treatment of heart valve disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells.

This study demonstrates the engineering of biologically active heart valve leaflets using prenatally available human umbilical cord-derived progenitor cells as the only cell source. Wharton's Jelly-derived cells and umbilical cord blood-derived endothelial progenitor cells were subsequently seeded on biodegradable scaffolds and cultured in a biomimetic system under biochemical or mechanical sti...

متن کامل

Human umbilical cord blood-derived endothelial cells reendothelialize vein grafts and prevent thrombosis.

OBJECTIVE To accelerate vein graft reendothelialization and reduce vein graft thrombosis by infusing human umbilical cord blood-derived endothelial cells (hCB-ECs) because loss of endothelium contributes to vein graft thrombosis and neointimal hyperplasia. METHODS AND RESULTS Under steady flow conditions in vitro, hCB-ECs adhered to smooth muscle cells 2.5 to 13 times more than ECs derived fr...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation journal : official journal of the Japanese Circulation Society

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 2013